CURSOR COORDINATES:

Example functions: r = 7 //Circle centered at origin a=4; n=3; a*cos(n*TH) // Rose 25*sin(TH)*pow(cos(TH),2) // Bifolium a=4; a*(cos(TH) +1) // Cardioid a=4; 2*a*(cos(TH)) // Circle of Radius a a=5; b=8; a*cos(TH) + b*sin(TH) // Circle y-intercept b, x-intercept a a=170; a*sin(TH)*tan(TH) //Cissoid of Diolces a=170; a=9; a*sin(TH)/TH // Cochleoid 2 * (1/sin(TH)) + 7 // Conchoid of Nicomedes a=14; 3*a*sin(TH)*cos(TH)/(pow(sin(TH),3) + pow(cos(TH),3)) // Folium of Descartes a=4; b=1; a * sqrt(abs(cos(b*TH))) a=8; b=8; b + a*cos(TH) // Limacon of Pascal p=11; 2*p/(1-cos(TH)) // Parabola a=5; a*TH" // Spiral of Archimedes a=9; a/TH" // Inverse Spiral a=0.2; exp(a*TH) // Logarithmic Spiral a=0.2; a + sqrt(4*a*TH) // Parabolic Spiral a=4; a*cos(2*TH)/cos(TH) // Strophoid 15*sin(9*TH) + 5 3 + 5*sin(4*TH) sin(2*cos(3*sin(TH))) sin(TH)+1/3*sin(3*TH)+1/5*sin(5*TH)+1/7*sin(7*TH)+1/9*sin(9*TH)+1/11*sin(11*TH) sin(TH) TH - pow(TH,3)/fact(3) + pow(TH,5)/fact(5) - pow(TH,7)/fact(7) // Series for sin(TH) TH*sin(2*TH) tan(TH) k=5; k/(1-cos(TH)) // Parabola with focus at origin, directrix at x=-k k=8; k/(1-cos(TH)) // Ellipse with a focus at origin k=12; 2*k/(1-2*cos(TH)) // Hyperbola 0 0 0 0 0 0 0 0.001 0.3 -0.5 0 0 1 0 0.7 0 0 PI/2+0.5 0 0 0 0 0 0 0 -PI/2+0.8 0.9 0 PI/2-.2 2*PI 2*PI 2*PI 2*PI 2*PI 2*PI PI/4 5*PI PI-0.3 PI/2+0.5 2*PI 2*PI 2*PI-1 6*PI 6*PI 6*PI 6*PI 3*PI/2-0.5 2*PI 2*PI 2*PI PI PI PI 12*PI PI/2-0.8 PI-.01 2*PI 3*PI/2+.2

Some equations adapted from CRC Standard Mathematical Tables 18th Edition